河南大学-麦考瑞大学生物医学联合创新中心   河南大学-麦考瑞大学生物医学联合创新中心
 
当前位置: 首页/科研成果/文章/2022/正文
 

Arsenic Prodrug-Mediated Tumor Microenvironment Modulation Platform for Synergetic Glioblastoma Therapy  

Jiliang Yan, Sumaira Hanif, Dongya Zhang, Muhammad Ismail, Xiao Wang, Qianjin Li, Bingyang Shi, Pir Muhammad,* and Haigang Wu*   

ACS Applied Materials & Interfaces 2022, 14, 32, 36487–36502 (IF=10.383)

Abstract

Glioblastoma (GBM) has a distinct internal environment characterized by high levels of glutathione (GSH) and low oxygen partial pressure, which significantly restrict most drugs’ effectiveness. Arsenic-based drugs are emerging candidates for treating solid tumors; however, relatively high doses in solo systems and inconsistent complementary systems severely damage the normal tissues. We proposed a novel covalently conjugated strategy for arsenic-based therapy via arsenic-boronic acid complex formation. The boronic acid was modified on silver (AgL) to capture AsV under an alkaline condition named arsenate plasmonic complex (APC) with a distinct Raman response. The APC can precisely release the captured AsV in lysosomal acidic pH that specifically targets TME to initiate a multimodal therapeutic effect such as GSH depletion and reactive oxygen species generation. In addition, GSH activation leads to subconverted AsV into AsIII, which further facilitated glutathione peroxidase (GPx) and superoxide dismutase inhibition, whereas the tumor selective etching of the silver core triggered by endogenous H2O2 that can oxidize to generate highly toxic Ag ions produces and supplies O2 to help the alleviated hypoxia. Both in vitro and in vivo data verify the APC-based chemotherapy paving the way for efficient nanomedicine-enabled boronate affinity-based arsenic chemotherapeutics for on demand site-specific cancer combination treatment of GBM tumors.


 
? 2017 河南大学-麦考瑞大学
生物医学联合创新中心
访问次数:
  地址
河南省开封市
河南大学金明校区,生命科学学院
475004
 技术支持:河南科加
  联系方式
邮箱: jcbi@vip.henu.edu.cn
facebooktwitteryoutubeg+