河南大学-麦考瑞大学生物医学联合创新中心   河南大学-麦考瑞大学生物医学联合创新中心
 
当前位置: 首页/科研成果/文章/2022/正文
 

Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy

Fawad Ur Rehman, Yang Liu, Qingshan Yang, Haoying Yang, Runhan Liu, Dongya Zhang, Pir Muhammad, Yanjie Liu, Sumaira Hanif, Muhammad Ismail, Meng Zheng, Bingyang Shi

Journal of Controlled Release 2022, 345,696–708.(IF=11.467)

Abstract

Glioblastoma (GBM) is a highly fatal and recurrent brain cancer without a complete prevailing remedy. Although the synthetic nanotechnology-based approaches exhibit excellent therapeutic potential, the associated cytotoxic effects and organ clearance failure rest major obstacles from bench to clinics. Here, we explored allogeneic bone marrow mesenchymal stem cells isolated exosomes (BMSCExo) decorated with heme oxygenase-1 (HMOX1) specific short peptide (HSSP) as temozolomide (TMZ) and small interfering RNA (siRNA) nanocarrier for TMZ resistant glioblastoma therapy. The BMSCExo had excellent TMZ and siRNA loading ability and could traverse the blood-brain barrier (BBB) by leveraging its intrinsic brain accumulation property. Notably, with HSSP decoration, the TMZ or siRNA encapsulated BMSCExo exhibited excellent TMZ resistant GBM targeting ability both in vitro and in vivo due to the overexpression of HMOX1 in TMZ resistant GBM cells. Further, the HSSP decorated BMSCExo delivered the STAT3 targeted siRNA to the TMZ resistant glioma and restore the TMZ sensitivity, consequently achieved the synergistically drug resistant GBM treatment with TMZ. Our results showed this biomimetic nanoplatform can serve as a flexible, robust and inert system for GBM treatment, especially emphasizing the drug resistant challenge

论文链接:https://doi.org/10.1016/j.jconrel.2022.03.036


 
? 2017 河南大学-麦考瑞大学
生物医学联合创新中心
访问次数:
  地址
河南省开封市
河南大学金明校区,生命科学学院
475004
 技术支持:河南科加
  联系方式
邮箱: jcbi@vip.henu.edu.cn
facebooktwitteryoutubeg+